

- GRADE 5 – OPERATIONS

Calculate:

$$\begin{array}{r} 166 \text{ R}3 \\ 4 \overline{) 643} \\ -440 \\ \hline 203 \\ -200 \\ \hline 3 \end{array}$$

160

50

✓

These three examples show the “Partial Quotient Method” in action. This algorithm is very flexible, clear, and tends to produce more consistently accurate answers at this grade level.

Calculate:

$$\begin{array}{r} 205 \text{ R}1 \\ 3 \overline{) 616} \\ -600 \\ \hline 16 \\ -16 \\ \hline 0 \\ \times 200 \\ \times 2 \\ \hline 400 \\ \times 3 \\ -18 \\ \hline 2 \end{array}$$

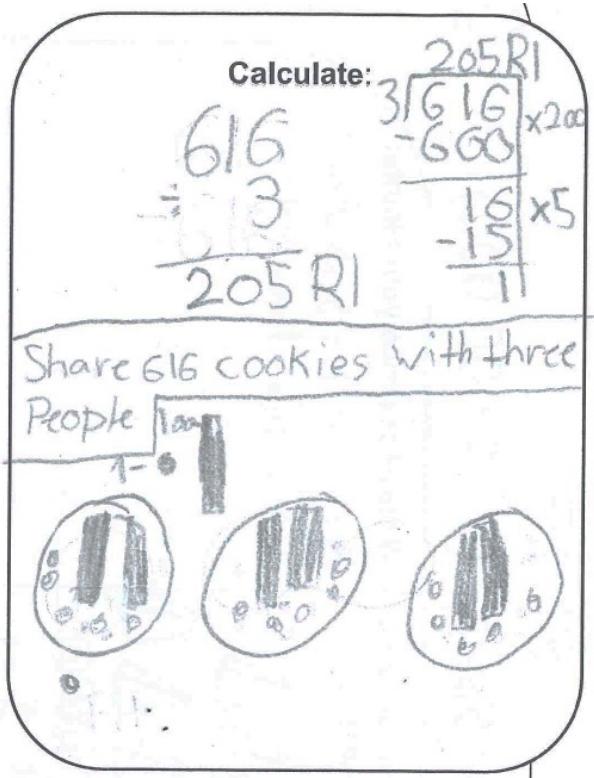
1605 R1

It's also much easier to assess students with this method. You can clearly see when there are gaps in foundational skills or a misunderstanding of division concepts.

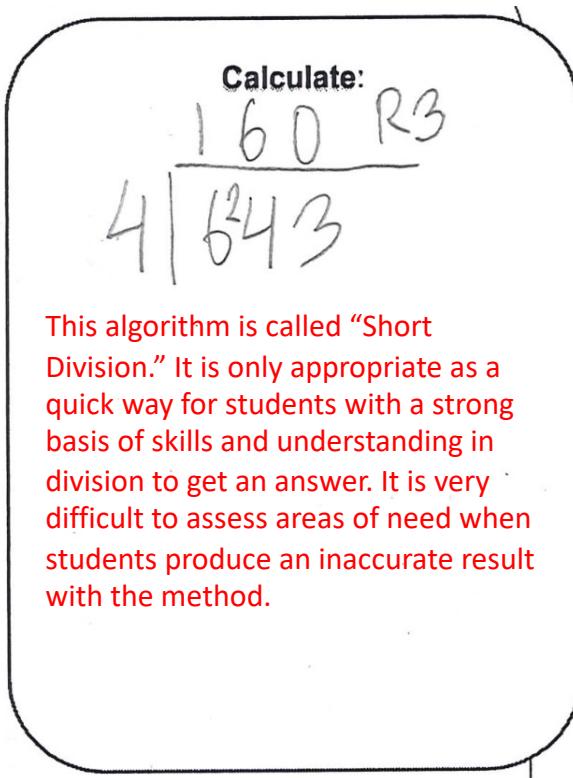
Calculate:

$$\begin{array}{r} 160 \text{ R}3 \\ 4 \overline{) 643} \\ -400 \\ \hline 243 \\ -240 \\ \hline 3 \\ \times 25 \\ \hline 100 \\ -100 \\ \hline 0 \\ \times 25 \\ \hline 10 \\ -10 \\ \hline 0 \\ \times 10 \\ \hline 0 \\ \hline 3 \end{array}$$

100

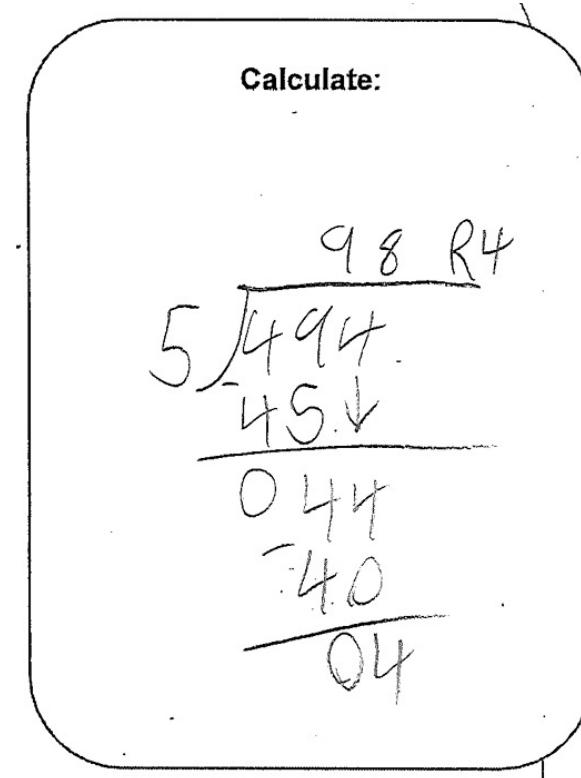

25

25

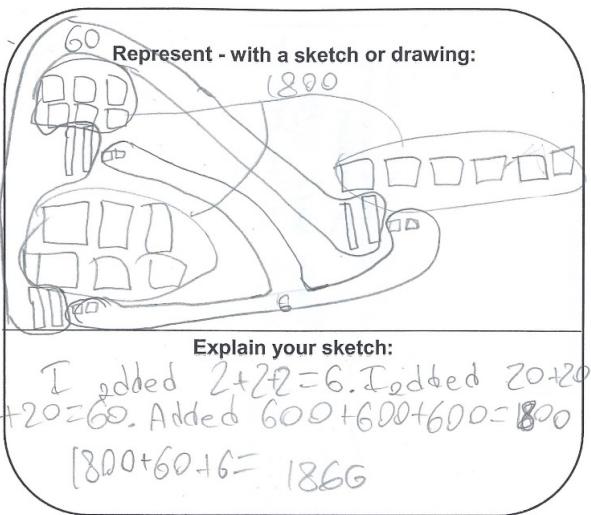

25

10

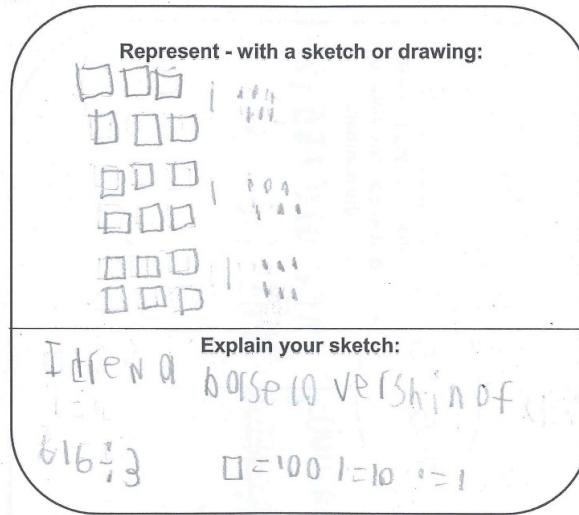
✓



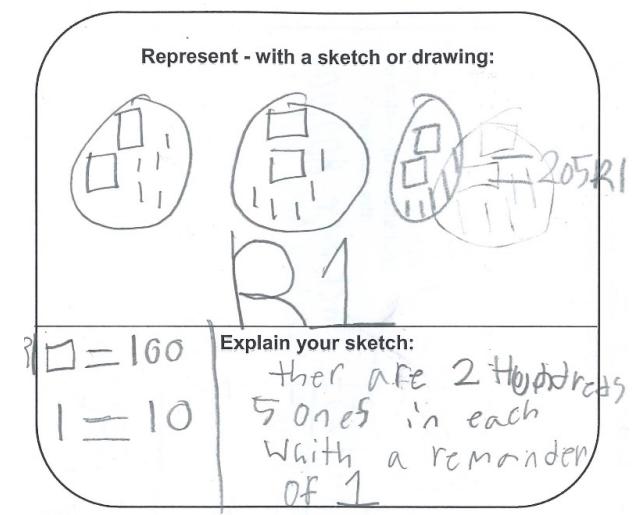
This student showed their understanding in many different ways. This is an example of "4" level work.



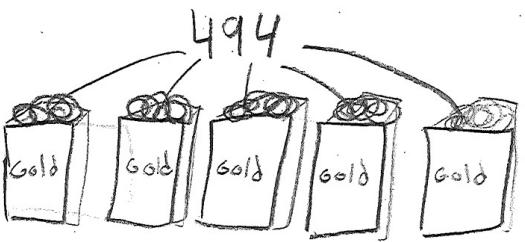
This algorithm is called "Short Division." It is only appropriate as a quick way for students with a strong basis of skills and understanding in division to get an answer. It is very difficult to assess areas of need when students produce an inaccurate result with the method.


The ubiquitous "long division" algorithm. It has a minimum of 7 steps that all need to be done in the correct order and requires students to have full automaticity in multiplication right up to 9×9 .

It is only appropriate for students who have gained a strong understanding of division through instruction that follows a concrete \rightarrow pictorial \rightarrow abstraction progression that teaches students what is actually happening in division.

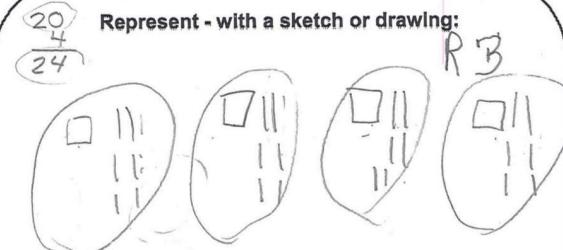


Pictorial representations of division must show the total (dividend) being divided into equal groups. There are many ways that students can do this successfully (See examples).



Replacing the numbers in the division expression with base ten does not show an understanding of division.

$$12 \div 3 =$$

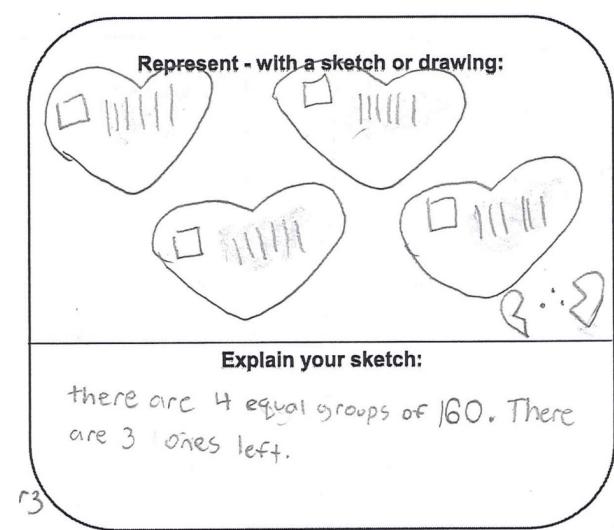
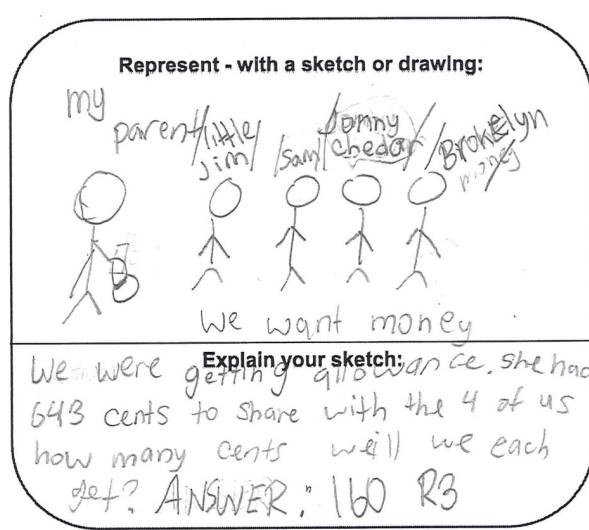
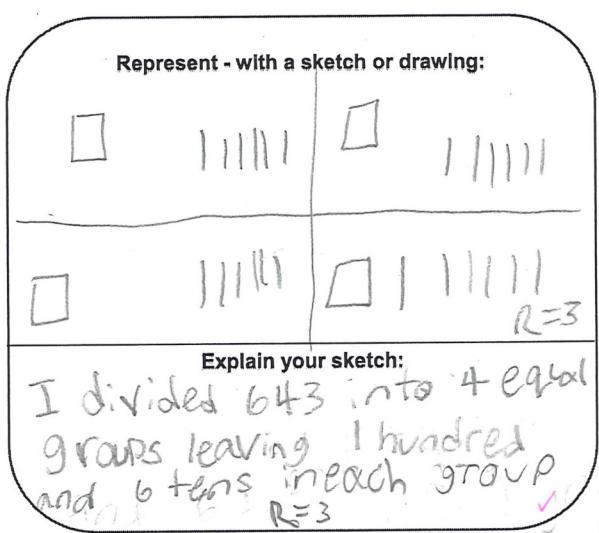

Represent - with a sketch or drawing:

Explain your sketch:

There 494 pieces of gold and
5 boxes to split it through.
How many ~~100~~ pieces

Represent - with a sketch or drawing:

Explain your sketch:




I drew 4 sets with
100 and 60 in it so it
equals up to 160.

Represent - with a sketch or drawing:

Explain your sketch:

I split 433 jelly Beans to
4 people. Each person got
108 jelly Beans

The justification can be any or all of:

- numbers and equations showing rounding and then mental math or simple calculation
- an explanation in words

A reasonable estimate with no justification should be scored as a 2.

Estimate – justify your thinking:

205 Because 2 groups of 3 fit into 6 and 3×5 is 15 and I added them together to get 205

To find a reasonable estimate for division, the most effective strategy is to round the dividend to a multiple of the divisor. The divisor should not be rounded because it changes the quotient too much.

e.g. $339 \div 6 \rightarrow 360 \div 6 = 60$ or $300 \div 6 = 50$ are both reasonable. $300 \div 10 = 30$ is not.

Estimate – justify your thinking:

200

I estimated 200 because I know $6 \div 3$ is 2 so I just added two zeros to two.

If a student is rounding in such a way that they still have to apply a full algorithm in order to find an estimate, that shows a lack of understanding and should be scored as a 2.

The purpose of rounding is to make the calculation of an estimate easy and quick, not just different.

Estimate – justify your thinking:

$616 \rightarrow 600$

rounding

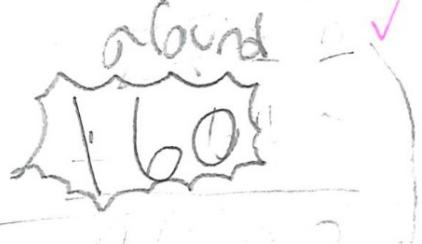
$600 \div 3 = 200$

dividing by 3

answer for estimation

200

Estimate – justify your thinking:


$$643 \div 4 =$$

$$600 \div 4 = 150$$

Estimate – justify your thinking:

$$4 \overline{)6^240}$$

abund

$$4 \overline{)6^240}$$

240

240

Estimate – justify your thinking:

$$4 \overline{)150}$$

$$4 \overline{)160}$$

$$4 \overline{)6^240}$$

$$640 \div 4 \approx 160$$

Real life examples should:

- prove that the student understands that division is the equal sharing of a quantity among a number of groups
- describe a situation that fits with the numbers in the division expression

Write a Real Life Example or Word Problem: I have 643 lego pieces and I gave 160 to each of my friends. There are 3 left over (160 pieces)

Write a Real Life Example or Word Problem: all the grade fives are going to middle school this year they have 4 options in the school gets equal amount of students if there were 643 grade five student how much students did each school get?

Write a Real Life Example or Word Problem: I had 643 blue bags and he/ I have 4 bags to put them in = need to put 160 bags in each bag,

Write a Real Life Example or Word Problem: Lary had 643 lego bricks and he needs to divide them between his 4 friends. 1/4 of each kind of lego strips gets given to a friend and split equally, but there's 3 left over. Each friend got 160 blocks

Write a Real Life Example or Word Problem: There were 643 kids in a school. There was a fire, and there were 4 exits. The principal had to separate them into 4 different groups. 3 kids went through the door to the roof and later the firefighter found them and got them down.

Write a Real Life Example or Word Problem: I have 100 dollars. I gave three of my friends 20 dollars which is $6/5$ and I have 1 dollar left for myself.

Write a Real Life Example or Word Problem: There were 616 doughnuts at the doughnut shop. There were 3 groups of people who wanted to get doughnuts. How many did each group get?

Write a Real Life Example or Word Problem: Rose planted 3 rows of 616 tulip seeds. How many are in each row? Are there remainders?

easy; Explain sketch because I had to explain my pic.
hard & Estimate because it is a bigger number,
goal, to get better at estimating

Reflect:

For "Estimate" it was a little hard to make. Reflect: because I'm not the best at making estimates so it was a bit of a challenge for "represent" it was quite easy because all you have to do is draw then explain your sketch. For "calculate" it was also quite easy because I'm quite good in my 3's and I get to use my 3's for this question. For "real life example" it was very easy because all I had to do was think of a scenario where I could have ~~use~~ ~~use~~ of an item.

easy; represent was easy because we practiced in school several times. Reflect: goal: try harder equations
Hard; word problem was hard because I had to write abt it because it was easy.

easy; Sketching because I usually am not good at drawing. Reflect: usually am not good at drawing, other pretty good at dividing when drawing. Strategy's hard: estimating cause I could not find a good strategy when calculating.

Reflect: the easy part was calculating because I know a lot of good ways to solve the question and how many real life problems because I had to think of a real life example.

Easy: Calculating using the part-whole method because it was a friendly number to split. Hard: Finding an accurate real life example because it has to display division. Goals: to find multiple estimates.

easy calculate because I know my facts | hard explaining my sketch because it's a lot of writing | goal to write a bit more every time

goal represent my goal is to draw better because it looks better | this was easy because short division is easier | calculate this was hard because there were so many real life examples.